Supervised Learning under Covarita Shift
نویسندگان
چکیده
منابع مشابه
Robust Supervised Learning under Distribution Shift Uncertainty
Distributionally Robust Supervised Learning (DRSL) is necessary for building reliable machine learning systems. When machine learning is deployed in the real world, its performance can be significantly degraded because test data may follow a different distribution from training data. Previous DRSL minimizes the loss for the worst-case test distribution. However, our theoretical analyses show th...
متن کاملRobust supervised learning under uncertainty in dataset shift
When machine learning is deployed in the real world, its performance can be significantly undermined because test data may follow a different distribution from training data. To build a reliable machine learning system in such a scenario, we propose a supervised learning framework that is explicitly robust to the uncertainty of dataset shift. Our robust learning framework is flexible in modelin...
متن کاملSemi-supervised speaker identification under covariate shift
In this paper, we propose a novel semi-supervised speaker identification method that can alleviate the influence of non-stationarity such as session dependent variation, the recording environment change, and physical conditions/emotions. We assume that the voice quality variants follow the covariate shift model, where only the voice feature distribution changes in the training and test phases. ...
متن کاملContinuous Target Shift Adaptation in Supervised Learning
Supervised learning in machine learning concerns inferring an underlying relation between covariate x and target y based on training covariate-target data. It is traditionally assumed that training data and test data, on which the generalization performance of a learning algorithm is measured, follow the same probability distribution. However, this standard assumption is often violated in many ...
متن کاملDiscriminative Learning Under Covariate Shift
We address classification problems for which the training instances are governed by an input distribution that is allowed to differ arbitrarily from the test distribution—problems also referred to as classification under covariate shift. We derive a solution that is purely discriminative: neither training nor test distribution are modeled explicitly. The problem of learning under covariate shif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Brain & Neural Networks
سال: 2006
ISSN: 1883-0455,1340-766X
DOI: 10.3902/jnns.13.111